
Chapter 9 :

Computer Science

Class XI (As per

CBSE Board)

Debugging

Visit : python.mykvs.in for regular updates

New

Syllabus

2019-20

Errors and Exceptions

In Python, there are two kinds of errors: syntax

errors and exceptions.

A syntax error is an error in the syntax of a sequence of

characters or tokens that is intended to be written in a

particular programming language.

e.g.

>>> while True print 'Hello world'

SyntaxError: invalid syntax

Visit : python.mykvs.in for regular updates

Errors and Exceptions

The other kind of errors in Python are

exceptions.

Even if a statement or expression is syntactically

correct, it may cause an error when an attempt is made

to execute it.

Errors detected during execution are called exceptions.

e.g.

>>> 10 * (1/0)

Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>

10 * (1/0)

ZeroDivisionError: integer division or modulo by zero

Visit : python.mykvs.in for regular updates

Errors and Exceptions

Standard Exceptions available in Python are

Exception, SystemExit,OverflowError, FloatingPointError,

ZeroDivisonError, EOFError, KeyboardInterrupt,

IndexError, IOError, SyntaxError , IndentationError ,

SystemExit , ValueError, TypeError , RuntimeError

Handling an exception

If you have some suspicious code that may raise an

exception, you can defend your program by placing the

suspicious code in a try: block

Visit : python.mykvs.in for regular updates

Errors and Exceptions
try

Syntax:
try:

You do your operations here

......................

except ExceptionI:

If there is ExceptionI, then execute this block.

except ExceptionII:

If there is ExceptionII, then execute this block.

......................

else:

If there is no exception then execute this block.

e.g.

try:

fh = open("testfile", "r")

fh.write("This is my test file for exception handling!!")

except IOError:

print ("Error: can\'t find file or read data")

else:

print ("Written content in the file successfully")

Visit : python.mykvs.in for regular updates

Debugging
• “print line debugging”

– At various points in your code, insert print statements that log the state of the

program

• You will probably want to print some strings with some variables

• You could just join things together like this:

>>>x=9

>>>print 'Variable x is equal to ' + str(x)

Output : Variable x is equal to 9

• … but that gets unwieldy pretty quickly

• The format function is much nicer:

>>>x=3

>>>y=4

>>>z=9

>>>print 'x, y, z are equal to {}, {}, {}'.format(x,y,z)

Output : x, y, z are equal to 6, 4, 8

Visit : python.mykvs.in for regular updates

Debugging
• Python Debugger: pdb

– insert the following in your program to set a breakpoint

– when your code hits these lines, it’ll stop running and launch an interactive

prompt for you to inspect variables, step through the program, etc.

import pdb

pdb.set_trace()

n to step to the next line in the current function

s to step into a function

c to continue to the next breakpoint

you can also run any Python command, like in the interpreter

Visit : python.mykvs.in for regular updates

Debugging
Create a.py file with below code and run it in python use n to step next line.

num_list = [500, 600, 700]

alpha_list = ['x', 'y', 'z']

import pdb

pdb.set_trace() #debugging code

def nested_loop():

for number in num_list:

print(number)

for letter in alpha_list:

print(letter)

if __name__ == '__main__':

nested_loop()

While executing above code whole program will be traced.

Another way is to invoke the pdb module from the command line.

$ python -m pdb mycode.py

Visit : python.mykvs.in for regular updates

